Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 820: 137607, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38141752

ABSTRACT

Magnetic resonance imaging plays an important role in characterizing microstructural changes and reorganization after traumatic injuries to the nervous system. In this study, we tested the feasibility of ex-vivo spinal cord diffusion tensor imaging (DTI) in combination with in vivo brain functional MRI to characterize spinal reorganization and its supraspinal association after a hemicontusion cervical spinal cord injury (SCI). DTI parameters (fractional anisotropy [FA], mean diffusion [MD]) and fiber orientation changes related to reorganization in the contused cervical spinal cord were compared to sham specimens. Altered fiber density and fiber directions occurred across the ipsilateral and contralateral hemicords but with only ipsilateral FA and MD changes. The hemicontusion SCI resulted in ipsilateral fiber breaks, voids and vivid fiber reorientations along the injury epicenter. Fiber directional changes below the injury level were primarily inter-hemispheric, indicating prominent below-level cross-hemispheric reorganization. In vivo resting state functional connectivity of the brain from the respective rats before obtaining the spinal cord samples indicated spatial expansion and increased connectivity strength across both the sensory and motor networks after SCI. The consistency of the neuroplastic changes along the neuraxis (both brain and spinal cord) at the single-subject level, indicates that distinctive reorganizational relationships exist between the spinal cord and the brain post-SCI.


Subject(s)
Cervical Cord , Spinal Cord Injuries , Rats , Animals , Diffusion Tensor Imaging/methods , Cervical Cord/injuries , Cervical Cord/pathology , Spinal Cord Injuries/pathology , Spinal Cord/pathology , Magnetic Resonance Imaging
2.
Sci Transl Med ; 15(714): eadg8656, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37729432

ABSTRACT

Human diseases may be modeled in animals to allow preclinical assessment of putative new clinical interventions. Recent, highly publicized failures of large clinical trials called into question the rigor, design, and value of preclinical assessment. We established the Stroke Preclinical Assessment Network (SPAN) to design and implement a randomized, controlled, blinded, multi-laboratory trial for the rigorous assessment of candidate stroke treatments combined with intravascular thrombectomy. Efficacy and futility boundaries in a multi-arm multi-stage statistical design aimed to exclude from further study highly effective or futile interventions after each of four sequential stages. Six independent research laboratories performed a standard focal cerebral ischemic insult in five animal models that included equal numbers of males and females: young mice, young rats, aging mice, mice with diet-induced obesity, and spontaneously hypertensive rats. The laboratories adhered to a common protocol and efficiently enrolled 2615 animals with full data completion and comprehensive animal tracking. SPAN successfully implemented treatment masking, randomization, prerandomization inclusion and exclusion criteria, and blinded assessment of outcomes. The SPAN design and infrastructure provide an effective approach that could be used in similar preclinical, multi-laboratory studies in other disease areas and should help improve reproducibility in translational science.


Subject(s)
Ischemic Stroke , Stroke , Female , Humans , Male , Rats , Animals , Mice , Rodentia , Laboratories , Reproducibility of Results , Stroke/therapy
3.
Geroscience ; 45(3): 1667-1685, 2023 06.
Article in English | MEDLINE | ID: mdl-36626020

ABSTRACT

Based on the premise that physical activity/exercise impacts hippocampal structure and function, we investigated if hippocampal metabolites for neuronal viability and cell membrane density (i.e., N-acetyl aspartate (NAA), choline (Cho), creatine (Cr)) were higher in older adults performing supervised exercise compared to following national physical activity guidelines. Sixty-three participants (75.3 ± 1.9 years after 3 years of intervention) recruited from the Generation 100 study (NCT01666340_date:08.16.2012) were randomized into a supervised exercise group (SEG) performing twice weekly moderate- to high-intensity training, and a control group (CG) following national physical activity guidelines of ≥ 30-min moderate physical activity ≥ 5 days/week. Hippocampal body and head volumes and NAA, Cho, and Cr levels were acquired at 3T with magnetic resonance imaging and spectroscopic imaging. Sociodemographic data, peak oxygen uptake (VO2peak), exercise characteristics, psychological health, and cognition were recorded. General linear models were used to assess group differences and associations corrected for age, sex, education, and hippocampal volume. Both groups adhered to their training, where SEG trained at higher intensity. SEG had significantly lower NAA/Cr in hippocampal body than CG (p = 0.04). Across participants, higher training intensity was associated with lower Cho/Cr in hippocampal body (p < 0.001). Change in VO2peak, increasing VO2peak from baseline to 3 years, or VO2peak at 3 years were not associated with hippocampal neurochemicals. Lower NAA/Cr in hippocampal body was associated with poorer psychological health and slightly higher cognitive scores. Thus, following the national physical activity guidelines and not training at the highest intensity level were associated with the best neurochemical profile in the hippocampus at 3 years.


Subject(s)
Cognition , Magnetic Resonance Imaging , Humans , Aged , Cognition/physiology , Exercise/physiology , Educational Status , Hippocampus/metabolism
4.
Stroke ; 53(5): 1802-1812, 2022 05.
Article in English | MEDLINE | ID: mdl-35354299

ABSTRACT

Cerebral ischemia and reperfusion initiate cellular events in brain that lead to neurological disability. Investigating these cellular events provides ample targets for developing new treatments. Despite considerable work, no such therapy has translated into successful stroke treatment. Among other issues-such as incomplete mechanistic knowledge and faulty clinical trial design-a key contributor to prior translational failures may be insufficient scientific rigor during preclinical assessment: nonblinded outcome assessment; missing randomization; inappropriate sample sizes; and preclinical assessments in young male animals that ignore relevant biological variables, such as age, sex, and relevant comorbid diseases. Promising results are rarely replicated in multiple laboratories. We sought to address some of these issues with rigorous assessment of candidate treatments across 6 independent research laboratories. The Stroke Preclinical Assessment Network (SPAN) implements state-of-the-art experimental design to test the hypothesis that rigorous preclinical assessment can successfully reduce or eliminate common sources of bias in choosing treatments for evaluation in clinical studies. SPAN is a randomized, placebo-controlled, blinded, multilaboratory trial using a multi-arm multi-stage protocol to select one or more putative stroke treatments with an implied high likelihood of success in human clinical stroke trials. The first stage of SPAN implemented procedural standardization and experimental rigor. All participating research laboratories performed middle cerebral artery occlusion surgery adhering to a common protocol and rapidly enrolled 913 mice in the first of 4 planned stages with excellent protocol adherence, remarkable data completion and low rates of subject loss. SPAN stage 1 successfully implemented treatment masking, randomization, prerandomization inclusion/exclusion criteria, and blinded assessment to exclude bias. Our data suggest that a large, multilaboratory, preclinical assessment effort to reduce known sources of bias is feasible and practical. Subsequent SPAN stages will evaluate candidate treatments for potential success in future stroke clinical trials using aged animals and animals with comorbid conditions.


Subject(s)
Brain Ischemia , Stroke , Aged , Animals , Brain , Brain Ischemia/therapy , Feasibility Studies , Humans , Infarction, Middle Cerebral Artery/therapy , Male , Mice , Stroke/therapy
5.
Anal Chem ; 94(5): 2536-2545, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35073049

ABSTRACT

Nuclear magnetic resonance (NMR) agents, composed of paramagnetic lanthanide ions (Ln3+) complexed with negatively charged cyclic chelating agents (Che(n+3)-) forming polyanionic lanthanide complexes (LnChen-), perturb sodium-23 (23Na) signals, a phenomenon which depends sodium ions (Na+) exchanging with LnChen-. We analyzed 23Na shiftability and broadening due to hyperfine and bulk magnetic susceptibility (BMS) effects that arise from LnChen- designs using selective Ln3+ ions (i.e., thulium, Tm3+; gadolinium, Gd3+; and europium, Eu3+) and macrocyclics derived from 1,4,7,10-tetraazacyclododecane (cyclen) [i.e., with phosphonate (DOTP8-) and carboxylate (DOTMA4-) arms] and 1,4,7-triazacyclononane (TACN) [i.e., with phosphonate (NOTP6-) arms]. All LnChen- complexes showed downfield shifts, but Gd3+ and Tm3+ agents, respectively, were dominated by BMS and hyperfine effects, in good agreement with theory. While 23Na shiftability and broadening were minimally affected by pH and competing cations (K+, Ca2+, and Mg2+) within physiological ranges, the 23Na shiftability and broadening were most sensitive to LnChen- concentration in relation to the interstitial Na+ level in vivo. Greatest 23Na shiftability and broadening were obtained with Tm3+ and Gd3+ agents, respectively. While BMS contribution to shiftability was most impacted by the number of unpaired electrons on Ln3+, negative charge on LnChen- regulated Na+ exchange for line broadening. In brain tumor models, TmDOTP5- with 23Na-NMR has been used previously to separate Na+ in intracellular, blood, and interstitial pools, while evidence here shows that GdDOTP5- can distinguish Na+ within intracellular and extracellular (i.e., blood and interstitial) pools. Given the biological importance of Na+ in vivo, future macrocyclic designs of LnChen- should be sought for 23Na-NMR biomedical applications.


Subject(s)
Lanthanoid Series Elements , Gadolinium/chemistry , Ions , Lanthanoid Series Elements/chemistry , Magnetic Resonance Spectroscopy , Sodium
6.
NMR Biomed ; 35(6): e4687, 2022 06.
Article in English | MEDLINE | ID: mdl-34970801

ABSTRACT

Paramagnetic agents that utilize two mechanisms to provide physiological information by magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI) are described. MRI with chemical exchange saturation transfer (CEST) takes advantage of the agent's exchangeable protons (e.g., -OH or -NHx , where 2 ≥ x ≥ 1) to create pH contrast. The agent's incorporation of non-exchangeable protons (e.g., -CHy , where 3 ≥ y ≥ 1) makes it possible to map tissue temperature and/or pH using an MRSI method called biosensor imaging of redundant deviation in shifts (BIRDS). Hybrid probes based upon 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate chelate (DOTA4- ) and its methylated analog (1,4,7,10-tetraazacyclododecane-α, α', α″, α‴-tetramethyl-1,4,7,10-tetraacetate, DOTMA4- ) were synthesized, and modified to create new tetra-amide chelates. Addition of several methyl groups per pendent arm of the symmetrical chelates, positioned proximally and distally to thulium ions (Tm3+ ), gave rise to favorable BIRDS properties (i.e., high signal-to-noise ratio (SNR) from non-exchangeable methyl proton peaks) and CEST responsiveness (i.e., from amide exchangeable protons). Structures of the Tm3+ probes elucidate the influence of methyl group placement on sensor performance. An eight-coordinate geometry with high symmetry was observed for the complexes: Tm-L1 was based on DOTA4- , whereas Tm-L2 and Tm-L3 were based on DOTMA4- , where the latter contained an additional carboxylate at the distal end of each arm. The distance of Tm3+ from terminal methyl carbons is a key determinant for sustaining BIRDS temperature sensitivity without compromising CEST pH contrast; however, water solubility was influenced by introduction of hydrophobic methyl groups and hydrophilic carboxylate. Combined BIRDS and CEST detection of Tm-L2, which features two high-SNR methyl peaks and a strong amide CEST peak, should enable simultaneous temperature and pH measurements for high-resolution molecular imaging in vivo.


Subject(s)
Biosensing Techniques , Protons , Amides , Biosensing Techniques/methods , Chelating Agents , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
7.
NMR Biomed ; 35(5): e4658, 2022 05.
Article in English | MEDLINE | ID: mdl-34837412

ABSTRACT

Chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS) methods differ respectively by detecting exchangeable and nonexchangeable proton signals by magnetic resonance. Because CEST contrast depends on both temperature and pH, simultaneous CEST and BIRDS imaging can be employed to separate these contributions. Here, we test if high-resolution pH imaging in vivo is possible with ratiometric CEST calibrated for temperature variations measured by BIRDS. Thulium- and europium-based DOTA-tetraglycinate agents, TmDOTA-(gly)4- and EuDOTA-(gly)4- , were used for high-resolution pH mapping in vitro and in vivo, using BIRDS for temperature adjustments needed for a more accurate ratiometric CEST approach. Although neither agent showed pH dependence with BIRDS in vitro in the pH range 6 to 8, each one's temperature sensitivity was enhanced when mixed because of increased redundancy. By contrast, the CEST signal of each agent was affected by the presence of the other agent in vitro. However, pH could be measured more accurately when temperature from BIRDS was detected. These in vitro calibrations with TmDOTA-(gly)4- and EuDOTA-(gly)4- enabled high-resolution pH imaging of glioblastoma in rat brains. It was concluded that temperature mapping with BIRDS can calibrate the ratiometric CEST signal from a cocktail of TmDOTA-(gly)4- and EuDOTA-(gly)4- agents to provide temperature-independent absolute pH imaging in vivo.


Subject(s)
Biosensing Techniques , Contrast Media , Animals , Biosensing Techniques/methods , Heterocyclic Compounds, 1-Ring , Hydrogen-Ion Concentration , Magnetic Resonance Imaging/methods , Rats
9.
Sci Rep ; 11(1): 6710, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33758290

ABSTRACT

Under normal conditions, high sodium (Na+) in extracellular (Na+e) and blood (Na+b) compartments and low Na+ in intracellular milieu (Na+i) produce strong transmembrane (ΔNa+mem) and weak transendothelial (ΔNa+end) gradients respectively, and these manifest the cell membrane potential (Vm) as well as blood-brain barrier (BBB) integrity. We developed a sodium (23Na) magnetic resonance spectroscopic imaging (MRSI) method using an intravenously-administered paramagnetic polyanionic agent to measure ΔNa+mem and ΔNa+end. In vitro 23Na-MRSI established that the 23Na signal is intensely shifted by the agent compared to other biological factors (e.g., pH and temperature). In vivo 23Na-MRSI showed Na+i remained unshifted and Na+b was more shifted than Na+e, and these together revealed weakened ΔNa+mem and enhanced ΔNa+end in rat gliomas (vs. normal tissue). Compared to normal tissue, RG2 and U87 tumors maintained weakened ΔNa+mem (i.e., depolarized Vm) implying an aggressive state for proliferation, whereas RG2 tumors displayed elevated ∆Na+end suggesting altered BBB integrity. We anticipate that 23Na-MRSI will allow biomedical explorations of perturbed Na+ homeostasis in vivo.


Subject(s)
Blood-Brain Barrier/metabolism , Glioma/metabolism , Sodium/metabolism , Biological Transport , Biomarkers , Energy Metabolism , Glioma/diagnostic imaging , Glioma/pathology , Magnetic Resonance Imaging , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...